top of page

Our Past Projects

Informing conservation from ridge-to-reef in Vanuatu
Ahupuaa.jpg

Expansion of coastal development, along with wastewater discharge and fertilizers, can harm coral reefs and their fisheries through increases in sediment and nutrient runoff. Consequent reef degradation directly affects ecological resilience, food security, human well-being, and cultural practices in tropical island communities around the world. To determine where management on land can most effectively support current community-led efforts to restore reef health and abundance in Vanuatu, we built a fine-scale, linked land-and-sea modeling framework that integrates existing land-use with coral reef condition and fisheries health and applied it at the regional scale using existing datasets and the local scale with models calibrated by field data we collected.

Pūpūkea Coral and Fish Assessment: 2010 - 2019
Healthy_reef_HI.jpg

The State of Hawaii created the Pūpūkea-Waimea Marine Life Conservation District (MLCD) on the north shore of the island of O‘ahu in 1983 (and expanded in 2002) to conserve the unique ecological resources of the area and to allow for public interaction with the marine environment. Scientific monitoring of fish and benthic communities in the Pūpūkea-Waimea MLCD has occurred over the years since its expansion with the most recent comprehensive surveys occurring in 2010. At the request of Malama Pūpūkea-Waimea (a non-profit community organization that conducts outreach and monitoring) Seascape Solutions replicated the 2010 surveys inside the MLCD in order to 1) evaluate changes in coral cover and 2) quantify changes in coral reef fish assemblages over time at Pūpūkea-Waimea MLCD

Ka‘ūpūlehu Marine Reserve Comparison of Targeted Fish Behavior
IMG_2581.jpg

Ka‘ūpūlehu is located on the west coast of Hawai‘i island. The Nature Conservancy Hawai‘i (TNCH) partnered with the Ka‘ūpūlehu community to help establish the Ka‘ūpūlehu Marine Reserve which went into effect on July 29, 2016. The rule establishes a 10-year no-take “rest period” (with limited exceptions) to allow for the recovery of reef fish stocks. Following the rest period, a fishery management plan (to be developed) will be implemented for Ka‘ūpūlehu. This analysis of the effect of protection on fish behavior was based on data collected in partnership with TNCH. It complements data collected by TNCH on fish assemblage metrics in the same areas, during the same time periods. 

Seascape models reveal places to focus coastal fisheries management
img_1315.jpg

To design effective marine reserves and support fisheries, more information on fishing patterns and impacts for targeted species is needed, as well as better understanding of their key habitats. We developed a set of fishing effort and habitat layers at high resolution and employed machine learning techniques to create regional-scale seascape models and predictive maps of biomass and body length of targeted reef fishes for the main Hawaiian Islands. By comparing current targeted fish distributions with those predicted when fishing effort was removed, areas with high recovery potential on each island were revealed. Spatial protection of these areas would aid recovery of nearshore coral reef fisheries

A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands
Ahupuaa_1.jpg

Declining natural resources have contributed to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and coral reef fisheries.  Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by human activities. To address this gap, we developed a linked land-sea tool, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers, mediated by human activities, and marine drivers on coral reefs.

Place-based management can reduce human impacts on coral reefs in a changing climate
SS_website_kaupulehu.jpg

We applied a linked land–sea tool, which couples groundwater nutrient export and coral reef models. This spatially explicit tool simultaneously tracks changes in multiple benthic and fish indicators as a function of community-led marine closures, land-use and climate change scenarios. We applied this framework in Ha‘ena and Ka‘upulehu, located at opposite ends of the Hawaiian Archipelago to identify priority areas on land where upgrading cesspools can reduce human impacts on coral reefs in the face of projected climate change impacts.

Scenario planning with linked land-sea models inform where forest
conservation actions will promote coral reef resilience
Fiji1.jpg

We developed a linked land-sea modeling framework based on remote sensing and empirical data, which couples sediment export and coral reef models at fine spatial resolution. This spatially-explicit (60 × 60 m) framework simultaneously tracks changes in multiple benthic and fish indicators as a
function of land-use and climate change scenarios. We applied this framework in Kubulau District, Fiji, to investigate the effects of logging, agriculture expansion, and restoration on coral reef resilience. We evaluated where land-use change and bleaching scenarios would impact sediment runoff and downstream coral reefs to identify priority areas on land, where conservation or restoration could promote coral reef resilience in the face of climate change.

bottom of page